Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Electron. j. biotechnol ; 43: 1-7, Jan. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087520

ABSTRACT

Background: Textile industry not only plays a vital role in our daily life but also a prominent factor in improving global economy. One of the environmental concern is it releases huge quantities of toxic dyes in the water leading to severe environmental pollution. Bacterial laccase and azoreductase successfully oxidize complex chemical structure of nitrogen group-containing azo dyes. Additionally, the presence of textile dye infuriates bacterial peroxidase to act as a dye degrading enzyme. Our present study deals with three textile dye degrading enzymes laccase, azoreductase, and peroxidase through analyzing their structural and functional properties using standard computational tools. Result: According to the comparative analysis of physicochemical characteristics, it was clear that laccase was mostly made up of basic amino acids whereas azoreductase and peroxidase both comprised of acidic amino acids. Higher aliphatic index ascertained the thermostability of all these three enzymes. Negative GRAVY value of the enzymes confirmed better water interaction of the enzymes. Instability index depicted that compared to laccase and preoxidase, azoreductase was more stable in nature. It was also observed that the three model proteins had more than 90% of total amino acids in the favored region of Ramachandran plot. Functional analysis revealed laccase as multicopper oxidase type enzyme and azoreductase as FMN dependent enzyme, while peroxidase consisted of α-ß barrel with additional haem group. Conclusion: Present study aims to provide knowledge on industrial dye degrading enzymes, choosing the suitable enzyme for industrial set up and to help in understanding the experimental laboratory requirements as well.


Subject(s)
Azo Compounds/metabolism , Peroxidase/chemistry , Laccase/chemistry , NADH, NADPH Oxidoreductases/chemistry , Temperature , Azo Compounds/chemistry , Textile Industry , Biodegradation, Environmental , Computer Simulation , Enzyme Stability , Peroxidase/metabolism , Lactase/metabolism , Coloring Agents/metabolism , NADH, NADPH Oxidoreductases/metabolism
2.
Braz. j. med. biol. res ; 51(11): e7660, 2018. tab, graf
Article in English | LILACS | ID: biblio-951727

ABSTRACT

Lactate modulates the expression of lactate oxidation complex (LOC)-related genes and cardiac blood flow under physiological conditions, but its modulatory role remains to be elucidated regarding pathological cardiac stress. The present study evaluated the effect of lactate on LOC-related genes expression and hemodynamics of hearts submitted to myocardial infarction (MI). Four weeks after MI or sham operation, isolated hearts of male Wistar rats were perfused for 60 min with Na+-lactate (20 mM). As expected, MI reduced cardiac contractility and relaxation with no changes in perfusion. The impaired cardiac hemodynamics were associated with increased reactive oxygen species (ROS) levels (Sham: 19.3±0.5 vs MI: 23.8±0.3 µM), NADPH oxidase (NOX) activity (Sham: 42.2±1.3 vs MI: 60.5±1.5 nmol·h−1·mg−1) and monocarboxylate transporter 1 (mct1) mRNA levels (Sham: 1.0±0.06 vs MI: 1.7±0.2 a.u.), but no changes in superoxide dismutase (SOD), catalase, NADH oxidase (NADox), and xanthine oxidase activities. Lactate perfusion in MI hearts had no additional effect on ROS levels, NADox, and NOX activity, however, it partially reduced mct1 mRNA expression (MI-Lactate 1.3±0.08 a.u.). Interestingly, lactate significantly decreased SOD (MI-Lactate: 54.5±4.2 µmol·mg−1·min−1) and catalase (MI: 1.1±0.1 nmol·mg−1·min−1) activities in MI. Collectively, our data suggest that under pathological stress, lactate lacks its ability to modulate the expression of cardiac LOC-related genes and the perfused pressure in hearts submitted to chronic MI. Together, these data contribute to elucidate the mechanisms involved in the pathogenesis of heart failure induced by MI.


Subject(s)
Animals , Male , Lactic Acid/metabolism , Lactic Acid/pharmacology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Perfusion , Time Factors , Catalase/analysis , Gene Expression , Rats, Wistar , Lactic Acid/analysis , Multienzyme Complexes/analysis , NADH, NADPH Oxidoreductases/analysis
3.
China Journal of Chinese Materia Medica ; (24): 469-477, 2018.
Article in Chinese | WPRIM | ID: wpr-771713

ABSTRACT

Tartary buckwheat Fagopyrum tataricum is an important medicinal and functional herb due to its rich content of flavonoids in the seeds. F.tataricum exhibited good functions for free radicals scavenging, anti-oxidation, anti-aging activities. Although much genetic knowledge of the synthesis, regulation, accumulation of rutin, the genetic basis of proanthocyanidins(PAs) in tartary buckwheat and their related gene expression changes under different lights(blue, red, far red, ultraviolet light) remain largely unexplored. In this study, we cloned one anthocyanidin reductase gene(ANR) and two leucocyanidin reductase gene(LAR) named FtANR,FtLAR1,FtLAR3 involved in formation of(+)-catechin and(-)-epicatechin precusor proanthocyanidin by digging out F. tataricum seed transcriptome data. The expression data showed that the opposite influence of red light on these gene transcript level compared to others lights. The expression levels of FtANR and FtLAR1 decreased and FtLAR3 appeared increment after exposed in the red light, while the expression levels of those genes appeared opposite result after exposed in the blue and far red light.


Subject(s)
Fagopyrum , Radiation Effects , Gene Expression Regulation, Plant , Radiation Effects , Light , NADH, NADPH Oxidoreductases , Genetics , Plant Proteins , Genetics , Proanthocyanidins , Seeds , Radiation Effects
4.
Braz. j. microbiol ; 46(3): 691-700, July-Sept. 2015. tab, ilus
Article in English | LILACS | ID: lil-755810

ABSTRACT

Keratinolytic microorganisms have become the subject of scientific interest due to their ability to biosynthesize specific keratinases and their prospective application in keratinic waste management. Among several bacterial classes, actinobacteria remain one of the most important sources of keratin-degrading strains, however members of the Micrococcaceae family are rarely scrutinized in regard to their applicatory keratinolytic potential. The tested Micrococcus sp. B1pz isolate from poultry feather waste was identified as M. luteus. The strain, grown in the medium with 1–2% chicken feathers and a yeast extract supplement, produced keratinases of 32 KU and lower level of proteases, 6 PU. It was capable to effectively decompose feathers or “soft” keratin of stratum corneum, in contrast to other “hard” hair-type keratins. The produced keratinolytic enzymes were mainly a combination of alkaline serine or thiol proteases, active at the optimum pH 9.4, 55 °C. Four main protease fractions of 62, 185, 139 and 229 kDa were identified in the crude culture fluid. The research on the auxiliary role of reducing factors revealed that reducing sulfur compounds could be applied in keratinolysis enhancement during enzymatic digestion of keratin, rather than in culture conditions. The presented M. luteus isolate exhibits a significant keratinolytic potential, which determines its feasible applicatory capacity towards biodegradation of poultry by-products or formulation of keratin-based feed components.

.


Subject(s)
Animals , Keratins/metabolism , Micrococcus luteus/enzymology , Micrococcus luteus/metabolism , Peptide Hydrolases/metabolism , Biodegradation, Environmental , Chickens/microbiology , Feathers/microbiology , Micrococcus luteus/isolation & purification , NADH, NADPH Oxidoreductases/metabolism , Oxidation-Reduction , Poultry/microbiology , Sulfur Compounds/metabolism , Waste Management
5.
Chinese Journal of Biotechnology ; (12): 220-230, 2015.
Article in Chinese | WPRIM | ID: wpr-345512

ABSTRACT

In this study, a fast carbonyl reductases colorimetric screening method for discovering stereoselective carbonyl reductases was established by combining the reverse alcohol oxidation with the azoreductase-catalyzed reduction of azo dye. When azo dye (Orange I , 4-(4-hydroxy-1-naphthylazo) benzenesulfonic acid) and azoreductase (AzoB) were added into the reaction system of alcohol oxidation catalyzed by carbonyl reductase, the produced NAD(P)H served as electron donor for the azoreductase to reduce the azo dye, resulting the color fade. Hence, the carbonyl reductases can be screened by the obvious color change. When chiral alcohol was used as the substrate, the activity and stereoselectivity of carbonyl reductases can be screened at the same time.


Subject(s)
Alcohol Oxidoreductases , Chemistry , Alcohols , Chemistry , Azo Compounds , Chemistry , Coloring Agents , Chemistry , High-Throughput Screening Assays , NADH, NADPH Oxidoreductases , Chemistry , NADP , Chemistry , Oxidation-Reduction , Stereoisomerism
6.
Experimental & Molecular Medicine ; : e156-2015.
Article in English | WPRIM | ID: wpr-147138

ABSTRACT

Endotoxic responses to bacterial lipopolysaccharide (LPS) are triggered by Toll-like receptor 4 (TLR4) and involve the production of inflammatory mediators, including interleukin-6 (IL-6), by macrophages. The detailed mechanism of IL-6 production by macrophages in response to LPS has remained unclear, however. We now show that LPS induces IL-6 synthesis in mouse peritoneal macrophages via the leukotriene B4 receptor BLT2. Our results suggest that TLR4-MyD88 signaling functions upstream of BLT2 and that the generation of reactive oxygen species (ROS) by NADPH oxidase 1 (Nox1) and consequent activation of the transcription factor nuclear factor (NF)-kappaB function downstream of BLT2 in this response. These results suggest that a TLR4-MyD88-BLT2-Nox1-ROS-NF-kappaB pathway contributes to the synthesis of IL-6 in LPS-stimulated mouse macrophages.


Subject(s)
Animals , Mice , Cell Line , Interleukin-6/biosynthesis , Leukotriene B4/metabolism , Ligands , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages, Peritoneal/immunology , Myeloid Differentiation Factor 88/metabolism , NADH, NADPH Oxidoreductases/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Receptors, Leukotriene B4/metabolism , Signal Transduction
7.
Journal of Korean Medical Science ; : 1246-1252, 2015.
Article in English | WPRIM | ID: wpr-120929

ABSTRACT

The purpose of this study was to investigate the age-related NADPH oxidase (arNOX) activity in patients with age-related knee osteoarthritis (OA). Serum and cartilage arNOX activities were determined using an oxidized ferricytochrome C reduction assay. Full-thickness knee joint cartilages obtained through total knee replacement surgery were graded according to the Outerbridge (OB) classification. Radiographic severity of OA was determined on Knee X-rays according to the Kellgren-Lawrence (K/L) grading system. Cartilage beta-galactosidase, HIF-1alpha, and GLUT-1 expression levels were evaluated as markers for tissue senescence, hypoxia, and glycolysis. Higher arNOX activities occurred with higher levels of cartilage beta-galactosidase, HIF-1alpha, and GLUT-1 (P = 0.002). arNOX activity in cartilages with surface defects (OB grade II, III) was higher than in those without the defects (OB grade 0, I) (P = 0.012). Cartilage arNOX activity showed a positive correlation with serum arNOX activity (r = -0.577, P = 0.023). Serum arNOX activity was significantly higher in the OA subgroup with bilateral ROA than in the OA with no or unilateral ROA (2.449 +/- 0.81, 2.022 +/- 0.251 nM/mL, respectively, P = 0.019). The results of this study demonstrate that OA itself is not a cause to increase arNOX activities, however, arNOX hyperactivity is related to a high degree of cartilage degradation, and a high grade and extent of ROA in age-related OA.


Subject(s)
Female , Humans , Male , Middle Aged , Biomarkers/metabolism , Cartilage Diseases/enzymology , Cartilage, Articular/enzymology , Enzyme Activation , NADH, NADPH Oxidoreductases , Osteoarthritis, Knee/diagnosis , Osteoporosis/diagnosis , Reproducibility of Results , Sensitivity and Specificity , Statistics as Topic
8.
Acta Physiologica Sinica ; (6): 74-82, 2015.
Article in Chinese | WPRIM | ID: wpr-255970

ABSTRACT

The study is aimed to explore the molecular mechanism of the treatment of apocynin in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. 5% DSS was used to mimic the UC model, and 2% apocynin was applied to treat the UC mice. HE staining was used for histopathological evaluation. Chemiluminescence technique was used to measure reactive oxygen species (ROS) production, and the rate of consumption of NADPH inhibited by DPI was detected to determine the NADPH oxidases (NOXs) activity. Western blot was applied to identify the level of p38MAPK phosphorylation, Griess reaction assay to analyze NO production, immunoenzymatic method to determine prostaglandin E2 (PGE2) production, real time RT-PCR and Western blot to identify the expression of iNOS and COX2, and enzyme linked immunosorbent assay to detect inflammatory cytokines TNF-α, IL-6, IFN-γ, IL-1β. Rat neutrophils were separated, and then ROS production, NOXs activity, NO and PGE2 production, NOX1 and p-p38MAPK expression were detected. Compared with the UC group, apocynin decreased ROS over-production and NOXs activity (P < 0.01), reduced p38MAPK phosphorylation, inhibited NO, PGE2 and cytokines production (P < 0.01). Apocynin also decreased NOXs activity and ROS over-production (P < 0.01), inhibited p38MAPK phosphorylation and NOX1 expression, and reduced NO and PGE2 production (P < 0.01) in separated neutrophils from UC mice. Therefore, apocynin could relieve inflammation in DSS-induced UC mice through inhibiting NOXs-ROS-p38MAPK signal pathway, and neutrophils play an important role.


Subject(s)
Animals , Mice , Rats , Acetophenones , Pharmacology , Colitis, Ulcerative , Drug Therapy , Cytokines , Metabolism , Dextran Sulfate , Inflammation , Drug Therapy , MAP Kinase Signaling System , NADH, NADPH Oxidoreductases , Metabolism , Neutrophils , Metabolism , Reactive Oxygen Species , Metabolism , p38 Mitogen-Activated Protein Kinases , Metabolism
9.
J. bras. nefrol ; 36(4): 482-489, Oct-Dec/2014. tab, graf
Article in Portuguese | LILACS | ID: lil-731141

ABSTRACT

Introdução: A hipertensão arterial tem alta prevalência em renais crônicos, sendo a hipervolemia um de seus fatores causais. Objetivo: Avaliar a influência da redução da volemia no controle pressórico e em parâmetros ecocardiográficos de pacientes renais crônicos em diálise peritoneal contínua. Métodos: Doze renais crônicos sem sinais clínicos de hipervolemia foram submetidos à intensificação da diálise com o objetivo de reduzir o peso corporal em 5%. A volemia foi avaliada pela bioimpedância elétrica e pela ultrassonografia de veia cava inferior (VCI). Os voluntários foram submetidos à monitorização ambulatorial da pressão arterial e a exame ecocardiográfico no período basal e após 5 semanas de intervenção. Resultados: Após a intensificação da ultrafiltração, houve redução significativa do peso corporal, da água extracelular e do diâmetro inspiratório da VCI, enquanto o índice de colapsamento da VCI não alterou de modo significativo. A despeito da redução do número de anti-hipertensivos, a pressão sistólica do período de sono reduziu de 138,4 ± 18,6 para 126,7 ± 18,0 mmHg, o descenso pressórico do sono aumentou e o diâmetro sistólico final do ventrículo esquerdo reduziu significantemente. Conclusão: A redução da volemia de pacientes em diálise peritoneal, clinicamente euvolêmicos, se associou a melhor controle pressórico e à diminuição do diâmetro sistólico final do ventrículo esquerdo. .


Introduction: Hypertension is highly prevalent in patients with chronic kidney disease and hypervolemia is one of the principal causes. Objective: To evaluate the influence of the reduction of volemia on blood pressure as well as on echocardiographic parameters in patients on continuous ambulatory peritoneal dialysis. Methods: Twelve patients with no clinical evidence of hypervolemia were submitted to an increase in the rate of the dialysis with the purpose of reducing body weight by 5%. The volemia was evaluated by electrical bioimpedance and by ultrasound of the inferior cava vena (ICV). Blood pressure was measured by ambulatory blood pressure monitoring and cardiac function was evaluated by echocardiography both at baseline and 5 weeks after the intervention period. Results: After the increase in the ultrafiltration, body weight, extracellular water and the inspiratory diameter of the ICV decreased significantly in parallel with a non-significant increase in the collapsing ICV index. Despite the reduction of anti-hypertensive drugs, systolic blood pressure during the sleep period decreased from 138.4 ± 18.6 to 126.7 ± 18.0 mmHg, the nocturnal blood pressure drop increased and the final systolic left ventricular diameter decreased significantly. Conclusion: Reduction of the volemia of patients on peritoneal dialysis, with no signs of hypervolemia, was associated with a better blood pressure control and with a decrease of the final systolic left ventricular diameter. .


Subject(s)
Animals , Cattle , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/metabolism , Ubiquinone/metabolism , Binding Sites , Electron Transport Complex I , Enzyme Inhibitors/pharmacology , In Vitro Techniques , Kinetics , Myocardium/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Nuclear Magnetic Resonance, Biomolecular , Rotenone/pharmacology
10.
Chinese Journal of Pathology ; (12): 463-467, 2014.
Article in Chinese | WPRIM | ID: wpr-292262

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the significance of NADPH quinine oxidoreductase 1 (NQO1) protein overexpression on prognostic evaluation of head and neck squamous cell carcinoma (HNSCC).</p><p><b>METHODS</b>NQO1 protein was detected in 162 of HNSCC, 45 cases of adjacent nontumor tissues and 26 samples of normal head and neck epithelia using EnVision immunohistochemical. Correlation between NQO1 overexpression and patients prognosis was also analyzed.</p><p><b>RESULTS</b>The positive rate and strongly positive rate of NQO1 protein were 84.0% (136/162) and 69.8% (113/162) in HNSCC, respectively, and both of which were significantly higher than either those in adjacent nontumor tissues and normal head and neck epithelia (both P < 0.01). NQO1 expression was significantly correlated with the clinical stage, pT and chemoradiotherapy of HNSCC (P < 0.01). Kaplan-Meier survival analysis showed that overall survival and disease-free survival rates were significantly higher in HNSCC patients with high level NQO1 expression than that those with low level of NQO1 expression (Log-rank = 6.625 , P = 0.010;Log-rank = 6.234 , P = 0.013). Additional analysis by Cox proportional hazard regression model showed that high level of NQO1 expression was an independent hazard predictor for overall survival of patients with HNSCC (Wald = 6.626, P = 0.008).</p><p><b>CONCLUSIONS</b>NQO1 expression level is closely correlated with the progression and prognosis of patients with HNSCC. High level of NQO1 expression may be used as an important indicator for patients with poor prognostic HNSCC.</p>


Subject(s)
Female , Humans , Breast , Carcinoma, Squamous Cell , Mortality , Pathology , Disease-Free Survival , Head and Neck Neoplasms , Mortality , Pathology , Kaplan-Meier Estimate , NAD(P)H Dehydrogenase (Quinone) , Metabolism , NADH, NADPH Oxidoreductases , Metabolism , Prognosis , Proportional Hazards Models
11.
Biomedical and Environmental Sciences ; (12): 953-961, 2013.
Article in English | WPRIM | ID: wpr-247104

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the possible effect of artesunate (ART) on schistosome thioredoxin glutathione reductase (TGR) and cytochrome c peroxidase (CcP) in Schistosoma mansoni-infected mice.</p><p><b>METHODS</b>A total of 200 laboratory bred male Swiss albino mice were divided into 4 groups (50 mice in each group). Group I: infected untreated group (Control group) received a vehicle of 1% sodium carbonyl methylcellulose (CMC-Na); Group II: infected then treated with artesunate; Group III: infected then treated with praziquantel, and group IV: infected then treated with artesunate then praziquantel. Adult S. mansoni worms were collected by Animal Perfusion Method, tissue egg counted, TGR, and CcP mRNA Expression were estimated of in S. mansoni adult worms by semi-quantitative rt-PCR.</p><p><b>RESULTS</b>Semi-quantitative rt-PCR values revealed that treatment with artesunate caused significant decrease in expression of schistosome TGR and CcP in comparison to the untreated group. In contrast, the treatment with praziquantel did not cause significant change in expression of these genes. The results showed more reduction in total worm and female worm count in combined ART-PZQ treated group than in monotherapy treated groups by either ART or PZQ. Moreover, complete disappearance (100%) of tissue eggs was recorded in ART-PZQ treated group with a respective reduction rate of 95.9% and 68.4% in ART- and PZQ-treated groups.</p><p><b>CONCLUSION</b>The current study elucidated for the first time that anti-schistosomal mechanisms of artesunate is mediated via reduction in expression of schistosome TGR and CcP. Linking these findings, addition of artesunate to praziquantel could achieve complete cure outcome in treatment of schistosomiasis.</p>


Subject(s)
Animals , Male , Mice , Artemisinins , Pharmacology , Cytochrome-c Peroxidase , Genetics , Multienzyme Complexes , Genetics , NADH, NADPH Oxidoreductases , Genetics , Polymerase Chain Reaction , RNA, Messenger , Genetics , Schistosoma
12.
Chinese Journal of Biotechnology ; (12): 410-419, 2012.
Article in Chinese | WPRIM | ID: wpr-342475

ABSTRACT

NAD(P)(H)-dependent oxidoreductase catalyzes the reduction of ketones or aldehydes to prepare a wide variety of valuable chiral alcohols or amines. However, expensive cofactors are absolutely required for the biocatalytic processes with oxidoreductases, which severely hinder their industrial applications. Consequently, the issue on reducing cofactor costs has become one of the major focuses in the field of biocatalysis. With the substantial development in recent years, a number of strategies have been proposed and implemented to solve the cofactor issues in the oxidoreductase catalyzed biocatalysis, including the establishment of cofactor regeneration system, the improvement of endogenous cofactor availability via metabolic engineering and the development of biomimetic agents to replace cofactors. In this review, recent trends and advances on these strategies are presented, and respective advantages and shortcomings are also discussed with a number of examples.


Subject(s)
Alcohols , Metabolism , Biocatalysis , Ketones , Metabolism , Metabolic Engineering , NADH, NADPH Oxidoreductases , Metabolism , Oxidation-Reduction
13.
China Journal of Chinese Materia Medica ; (24): 186-188, 2012.
Article in Chinese | WPRIM | ID: wpr-288675

ABSTRACT

<p><b>OBJECTIVE</b>To analysis the effects of water deficit on the transcript level of SOD, APX, DHAR and MDHAR genes in Scutellaria baicalensis.</p><p><b>METHOD</b>Three-month-old S. baicalensis was in glasshouse under water deficit stress, and the transcript level of SOD, APX, DHAR and MDHAR genes were analysis utilized semi-quantitative RT-PCR.</p><p><b>RESULT</b>Compared with the control group, a significant decline of the transcriptional level of APX gene was observed at 70 days after water deficit. The transcript level of DHAR gene was reduced at 30 and 50 days after water deficit. And MDHARI gene was significant declined at 50 days.</p><p><b>CONCLUSION</b>AsA which is an important antioxidant plays a major role in hydrogen peroxide clear system under water deficit, and maybe have an antagonistic effect to the accumulation of baicalein.</p>


Subject(s)
Ascorbate Peroxidases , Genetics , Metabolism , Ascorbic Acid , Metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Hydrogen Peroxide , Metabolism , NADH, NADPH Oxidoreductases , Genetics , Metabolism , Oxidoreductases , Genetics , Metabolism , Plant Proteins , Genetics , Metabolism , Reverse Transcriptase Polymerase Chain Reaction , Scutellaria baicalensis , Genetics , Metabolism , Superoxide Dismutase , Genetics , Metabolism , Time Factors , Water , Metabolism , Pharmacology
14.
Acta Academiae Medicinae Sinicae ; (6): 212-215, 2012.
Article in English | WPRIM | ID: wpr-352926

ABSTRACT

<p><b>OBJECTIVE</b>To study the expression of gene associated with retinoid-interferon-induced mortality-19(GRIM-19) in preimplantation embryo of mice and explore its role in embryonic development.</p><p><b>METHODS</b>The protein and mRNA expressions of GRIM-19 in 2-cell, 4-cell, 8-cell, morula, and blastocyst phases of mice preimplantation embryo were detected by Western blot analysis and Real-time polymerase chain reaction (PCR).</p><p><b>RESULTS</b>GRIM-19 was continuously expressed in every stage of preimplantation embryo of mice. Western blot analysis and Real-time PCR demonstrated a gradual increase of GRIM-19 expression from 2-cell, which reached a peak in 8-cell phase and then decreased progressively.</p><p><b>CONCLUSIONS</b>The expression of GRIM-19 in mouse preimplantation embryos changes as at different developmental phases. GRIM-19 may play an important role during embryonic development.</p>


Subject(s)
Animals , Female , Mice , Pregnancy , Blastocyst , Metabolism , Interferons , Pharmacology , NADH, NADPH Oxidoreductases , Genetics , Metabolism , RNA, Messenger , Genetics , Tretinoin , Pharmacology
15.
National Journal of Andrology ; (12): 21-26, 2011.
Article in Chinese | WPRIM | ID: wpr-266218

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the expressions of survivin and GRIM-19 in prostatic cancer tissue and their clinical implications.</p><p><b>METHODS</b>We detected the expressions of survivin and GRIM-19 in the tissues of normal prostate (NP), benign prostate hyperplasia (BPH) and prostate cancer (PCa) using immunohistochemical staining, RT-PCR and Western blot, and processed the data by SPSS12.</p><p><b>RESULTS</b>The positive rates of survivin expression were 6.25% , 18.18% and 90.62% in NP, BPH and PCa (P < 0.01), while those of GRIM-19 were 87.50%, 81.82% and 9.37% , respectively (P < 0.01). Semiquantitative RT-PCR and immunohistochemical staining showed that both survivin mRNA and survivin expressions were highly positive in PCa but negative in NP and BPH. Western blot exhibited that the survivin protein was expressed strongly in PCa but weakly in NP and BPH, while the GRIM-19 protein was expressed just contrariwise (P < 0.01).</p><p><b>CONCLUSION</b>The expressions of survivin and GRIM-19 may be closely correlated with the pathogenesis of prostate cancer.</p>


Subject(s)
Humans , Male , Apoptosis Regulatory Proteins , Metabolism , Case-Control Studies , Inhibitor of Apoptosis Proteins , Metabolism , NADH, NADPH Oxidoreductases , Metabolism , Prostate , Metabolism , Pathology , Prostatic Neoplasms , Metabolism , Pathology
16.
International Journal of Diabetes Mellitus. 2010; 2 (2): 119-121
in English | IMEMR | ID: emr-117854

ABSTRACT

Diabetes mellitus [TDM] is strongly associated with oxidative stress. Human erythrocytes contain a plasma membrane redox system [PMRS] which transfers electrons from intracellular donors [NADH, ascorbate] to extracellular acceptors outside the cell. We show that the activity of erythrocyte PMRS and APR reductase becomes elevated in first degree relatives of type 2 diabetics and in TDM subjects. The increase in PMRS and APR reductase signifies compensatory mechanisms to mitigate increased oxidative stress. These findings show that an impaired redox balance may be a cause the disturbance of homeostasis in type 2 diabetic families, even before the development of the disease


Subject(s)
Humans , Adult , Oxidative Stress , NADH, NADPH Oxidoreductases , Family , Erythrocytes/enzymology , Erythrocytes/metabolism , Diabetes Mellitus, Type 2/enzymology
17.
Protein & Cell ; (12): 780-790, 2010.
Article in English | WPRIM | ID: wpr-757441

ABSTRACT

Azoreductases are involved in the bioremediation by bacteria of azo dyes found in waste water. In the gut flora, they activate azo pro-drugs, which are used for treatment of inflammatory bowel disease, releasing the active component 5-aminosalycilic acid. The bacterium P. aeruginosa has three azoreductase genes, paAzoR1, paAzoR2 and paAzoR3, which as recombinant enzymes have been shown to have different substrate specificities. The mechanism of azoreduction relies upon tautomerisation of the substrate to the hydrazone form. We report here the characterization of the P. aeruginosa azoreductase enzymes, including determining their thermostability, cofactor preference and kinetic constants against a range of their favoured substrates. The expression levels of these enzymes during growth of P. aeruginosa are altered by the presence of azo substrates. It is shown that enzymes that were originally described as azoreductases, are likely to act as NADH quinone oxidoreductases. The low sequence identities observed among NAD(P)H quinone oxidoreductase and azoreductase enzymes suggests convergent evolution.


Subject(s)
Benzoquinones , Metabolism , Catalytic Domain , Enzyme Stability , Evolution, Molecular , Flavins , Chemistry , Hot Temperature , Kinetics , Mesalamine , Chemistry , NAD , Metabolism , NADH, NADPH Oxidoreductases , Chemistry , NADP , Metabolism , Osmolar Concentration , Oxidation-Reduction , Phenylhydrazines , Chemistry , Phylogeny , Protein Binding , Pseudomonas aeruginosa , Spectrophotometry, Ultraviolet
18.
Biol. Res ; 42(3): 315-326, 2009. ilus, tab
Article in English | LILACS | ID: lil-531965

ABSTRACT

The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities ...


Subject(s)
Ascorbic Acid/metabolism , Glutathione/metabolism , Marantaceae/enzymology , Plant Leaves/enzymology , Rosa/enzymology , Droughts , Glutathione Reductase/metabolism , NADH, NADPH Oxidoreductases/metabolism , Oxidoreductases/metabolism , Stress, Physiological
19.
Experimental & Molecular Medicine ; : 171-179, 2009.
Article in English | WPRIM | ID: wpr-76613

ABSTRACT

Resveratrol is a polyphenolic compound in red wine that has anti-oxidant and cardioprotective effects in animal models. Reactive oxygen species (ROS) and monocyte chemotactic protein-1 (MCP-1) play key roles in foam cell formation and atherosclerosis. We studied LPS-mediated foam cell formation and the effect of resveratrol. Resveratrol pretreatment strongly suppressed LPS-induced foam cell formation. To determine if resveratrol affected the expression of genes that control ROS generation in macrophages, NADPH oxidase 1 (Nox1) was measured. Resveratrol treatment of macrophages inhibited LPS-induced Nox1 expression as well as ROS generation, and also suppressed LPS-induced MCP-1 mRNA and protein expression. We investigated the upstream targets of Nox1 and MCP-1 expression and found that Akt-forkhead transcription factors of the O class (FoxO3a) is an important signaling pathway that regulates both genes. These inhibitory effects of resveratrol on Nox1 expression and MCP-1 production may target to the Akt and FoxO3a signaling pathways.


Subject(s)
Humans , Antioxidants/pharmacology , Cells, Cultured , Chemokine CCL2/genetics , Enzyme Activation/drug effects , Foam Cells/drug effects , Forkhead Transcription Factors/metabolism , Lipopolysaccharides/pharmacology , NADH, NADPH Oxidoreductases/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Stilbenes/pharmacology
20.
Mem. Inst. Oswaldo Cruz ; 103(3): 263-270, May 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-485218

ABSTRACT

The fungus Lentinus strigosus (Pegler 1983) (Polyporaceae, basidiomycete) was selected in a screen for inhibitory activity on Trypanosoma cruzi trypanothione reductase (TR). The crude extract of L. strigosus was able to completely inhibit TR at 20 µg/ml. Two triquinane sesquiterpenoids (dihydrohypnophilin and hypnophilin), in addition to two panepoxydol derivatives (neopanepoxydol and panepoxydone), were isolated using a bioassay-guided fractionation protocol. Hypnophilin and panepoxydone displayed IC50 values of 0.8 and 38.9 µM in the TR assay, respectively, while the other two compounds were inactive. The activity of hypnophilin was confirmed in a secondary assay with the intracellular amastigote forms of T. cruzi, in which it presented an IC50 value of 2.5 µ M. Quantitative flow cytometry experiments demonstrated that hypnophilin at 4 µM also reduced the proliferation of human peripheral blood monocluear cells (PBMC) stimulated with phytohemaglutinin, without any apparent interference on the viability of lymphocytes and monocytes. As the host immune response plays a pivotal role in the adverse events triggered by antigen release during treatment with trypanocidal drugs, the ability of hypnophilin to kill the intracellular forms of T. cruzi while modulating human PBMC proliferation suggests that this terpenoid may be a promising prototype for the development of new chemotherapeutical agents for Chagas disease.


Subject(s)
Animals , Cattle , Humans , Mice , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Lentinula/chemistry , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Enzyme Inhibitors/isolation & purification , Flow Cytometry , Lymphocytes/drug effects , Monocytes/drug effects , Trypanocidal Agents/isolation & purification , Trypanosoma cruzi/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL